CILTACABTAGENE AUTOLEUCEL (CILTA-CEL), A B-CELL MATURATION ANTIGEN (BCMA)-DIRECTED CHIMERIC ANTIGEN RECEPTOR (CAR) T-CELL THERAPY, IN PATIENTS (PTS) WITH MULTIPLE MYELOMA (MM) AND EARLY RELAPSE AFTER INITIAL THERAPY: CARTITUDE-2 COHORT B

van de Donk, Niels W.C.J.¹; Delforge, Michel²; Agha, Mounzer E.³; Cohen, Adam D⁴; Cohen, Yael C⁵; Hillengass, Jens⁶; Anguille, Sébastien⁷; Kerre, Tessa⁸; Roeloffzen, Wilfried⁹; Schecter, Jordan Mark¹⁰; DeBraganca, Kevin C.¹⁰; Varsos, Helen¹⁰; Wang, Liwei¹⁰; Vogel, Martin¹¹; Zudaire, Enrique¹²; Corsale, Christina¹⁰; Akram, Muhammad¹³; Geng, Dong¹³; Nesheiwat, Tonia¹³; Bubuteishvili-Pacaud, Lida¹³; Sonneveld, Pieter¹⁴; Zweegman, Sonja¹

¹Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, ²University Hospitals (UZ) Leuven, Leuven, Belgium, ³UPMC Hillman Cancer Center, Pittsburgh, PA, USA, ⁴Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA, ⁵Tel-Aviv Sourasky (Ichilov) Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel;, ⁶Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA, ⁷Vaccine and Infectious Disease Institute, University of Antwerp, Edegem, Belgium, Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium, ⁸University Hospital Ghent, Ghent, Belgium, ⁹University Medical Center Groningen, Groningen, Netherlands, ¹⁰Janssen R&D, Raritan, NJ, USA, ¹¹Janssen Global Services, LLC, Raritan, NJ, ¹²Janssen R&D, Spring House, PA, USA, ¹³Legend Biotech USA, Piscataway, NJ, USA, ¹⁴Erasmus MC University and Medical Center, Rotterdam, Netherlands

Introduction: Cilta-cel is a CAR-T therapy with 2 BCMA-targeting single-domain antibodies. Here, we present the first results from cohort B of the CARTITUDE-2 study with cilta-cel CAR-T therapy (NCT04133636), which enrolled pts following early relapse after initial therapy that included a proteasome inhibitor (PI) and immunomodulatory (IMiD) drugs.

Material and Methods: A single cilta-cel infusion (target dose 0.75×10^{6} CAR+ viable T cells/kg) was given to eligible pts 5–7 d after start of lymphodepletion (300 mg/m² cyclophosphamide and 30 mg/m² fludarabine daily for 3 d). The primary objective was minimal residual disease (MRD) negativity at 10^{-5} , as assessed by next generation sequencing. Adverse events (AEs) were graded using CTCAE v5.0 (cytokine release syndrome [CRS]) and immune effector cell associated neurotoxicity syndrome (ICANS) by ASTCT criteria.

Results: As of the April 15, 2021, data cutoff, 18 pts (median age 57 y) received cilta-cel, and 2 pts died before cilta-cel infusion (1 each due to progressive disease and worsening general status). Median follow-up was 4.7 mo; median time from diagnosis to enrollment was 1.1 y. Overall response rate was 88.9%, 27.8% of pts achieved ≥complete response and 66.7% achieved ≥very good partial response. Of pts who were MRD-evaluable (n=9), all were MRD 10⁻⁵ negative. At data cutoff, all but 1 pt remained in clinical response. Hematologic TEAEs in ≥20% of pts were neutropenia (89%), thrombocytopenia (61%), anemia (50%), leukopenia (28%), and lymphopenia (22%). CRS occurred in 15 (83%) pts (1 gr 4). ICANS (gr 1) occurred in 1 pt. One pt experienced movement and neurocognitive TEAEs (gr 3) on Day 38 post cilta-cel infusion. No study deaths occurred post cilta-cel infusion.

Conclusions: A single cilta-cel infusion led to early and deep responses in pts who experienced early clinical relapse/tx failure to initial therapy, with a manageable safety profile.