

Brain reactivity to nonverbal emotional vocalizations during NREM sleep

Demetrio Grollero, Damiana Bergamo, Monica Betta, Giulio Bernardi

Momilab Research Unity, IMT School of Advanced Studies Lucca

INTRODUCTION

Sleep is characterized by a relative disconnection from the external environment and prompt reversibility in response to salient stimuli. These properties reflect the biological need to ensure the sleep continuity necessary for sleep-dependent functions while minimizing the risks derived from potential threats in the sleeper's surroundings. In this perspective, detecting messages conveyed by conspecific during sleep might represent a crucial adaptive trait. While previous studies demonstrated some degree of affective processing during sleep [1,2], they mainly focused on negative emotions and/or verbal stimuli, which may involve high-level brain functions. In this study, we investigated how the sleeping brain responds to naturalistic non-verbal human vocalizations [3] (vocal bursts, VB) during NREM sleep.

- EEG relaxed wakefulness (eyes closed) during a passive listening protocol
- Behavioral subjective ratings of Valence and Arousal

DATA ANALYSES

Topographic differences between valence classes, black dots indicate significant electrodes after cluster mass correction (p < 0.05)

- An automated preprocessing pipeline was used to detect and interpolate bad channels, reduce artifacts through an independent component analysis (ICA), and reject bad stimulation trials
- Channel-by-channel automatic detection of slow waves
 [4] (0.5-2 Hz) and spindles (10-16 Hz) [5]
- The amplitude of KC's components was computed as the mean signal in a 40 ms window around detected peaks
- Topographic analyses were performed using t-tests and cluster-mass corrections for multiple comparisons.

CONTACT

CONCLUSIONS

Our results revealed different processing of negative, neutral, and positive stimuli, consistent with a preserved encoding of affective valence during NREM sleep. Maintaining the ability to detect affectively-charged communicative stimuli during sleep could have conferred positive benefits in our evolutionary past.

REFERENCES

[1] Blume et al., 2018 /doi.org/10.1016/j.neuroimage.2018.05.056
[2] Ameen et al., 2021 /doi.org/10.1523/JNEUROSCI.2524-20.2021
[3] Cowen et al., 2019 /doi.org/10.1037/amp0000399
[4] Siclari et al., 2014 /doi.org/10.5665/sleep.40705
[5] Parekh et al., 2015 /doi.org/10.1016/j.jneumeth.2015.04.006

demetrio.grollero@imtlucca.it

https://esleepeurope.eu/