Estimation bias and agreement limits between two assessment methods of Habitual Sleep Duration in epidemiological surveys and the impact of Sleep Quality and Social Time Pressure

Maria Korman ${ }^{1}$, Daria Zarina ${ }^{1}$, Vadim Tkachev*, Ilona Merikanto ${ }^{2}$, Bjørn Bjorvatn ${ }^{3,4}$, Adrijana Koscec Bjelajac5, Catia Reis ${ }^{6,7,8}$

 Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal. ${ }^{8}$ Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal.

Background

Assessing habitual sleep duration (HSD) is vital for mapping sleep-health relationships. Evaluating differences between selfreport methods used to measure HSD in surveys is crucial for understanding bias and influencing factors ${ }^{1-3}$. This study aimed to evaluate estimation bias and agreement limits between two short self-report methods for assessing HSD, considering sleep quality (SQ) and social jetlag (SJL) as potential predictors of bias.

Methods

Using data from the International COVID Sleep Study-II (ICOSS-II) conducted online in 2021, we compared two self-report methods for assessing HSD in a sample of 10,268 participants. Method-Self involved a single question about average nightly sleep duration ($H_{S D}$ self $)$. Method-MCTQ employed questions about sleep onset and offset times on workdays and free days to calculate mean HSD during the week and on specific days ($\mathrm{HSD}_{\mathrm{MCTQweek}}$ /work/free $)$. SJL was determined as the difference in midsleep timing between workdays and free days. Sleep quality was assessed using a 5 -point Likert scale.

Results

The $\mathrm{HSD}_{\text {self }}$ consistently underestimated HSD compared to $\mathrm{HSD}_{\text {MCTQweek }}$ (mean bias 42.41 ± 67.42 minutes) with an agreement range within ± 2.2 hours. Age did not impact the HSD bias.
$H_{S D}{ }_{\text {MCTQwork }}$ showed less bias and better agreement with $\mathrm{HSD}_{\text {self }}$ as compared to $\mathrm{HSD}_{\text {MCTQfree. }}$. Irregular sleep duration was frequent, with mean difference between free and workdays of -43.35 ± 78.26 minutes.

The bias and agreement range between methods increased with poorer SQ (ranging from -26.69 ± 58.10 to -79.97 ± 97.29 minutes, good and bad quality groups, respectively). Regressions showed that SQ was the leading predictor of different HSDs and estimation bias (with $\mathrm{HSD}_{\text {self }}$ demonstrating the largest dependence on it), except for $\mathrm{HSD}_{\text {MCTQfree }}$ where SJL was the top predictor.

Conclusions

This study highlights that Method-Self and Method-MCTQ capture different aspects of HSD despite targeting the same construct. Method-MCTQ represents sleep intervals on workdays and free days without adjustments to SQ issues such as wakefulness after sleep onset, and accounts for sleep irregularity. Method-Self represents how the respondents interpret their sleep, and most likely this relates to their sleep on workdays. The magnitude of disagreement between methods is primarily driven by SQ; thus, surveys focusing on sleep-health relationships may bidirectionally adjust possible bias by including a question addressing SQ.

[^0]
References

1. Miller, C. B., et al. (2015). Agreement between simple questions about sleep duration and sleep diaries in a large online survey. Sleep Health, 1(2), 133-137
2. Muzni, K., et al. (2021). Self-reported sleep quality is more closely associated with mental and physical health than chronotype and sleep duration in young adults: A multiinstrument analysis. Journal of Sleep Research, 30(1), e13152.
3. St-Onge, M. P., et al. (2019). Information on bedtimes and wake times improves the relation between self-reported and objective assessments of sleep in adults. Journal of Clinical Sleep Medicine, 15(7).

[^0]: We would like to thank the ICOSS-II research group (https://www.helsinki.fi/en/projects/icoss) and the anonymous participants who donated their data and time

