

Human serum proteomics reveal molecular signature after sleep deprivation at night

Protein profile after one night of sleep loss

Alvhild Alette Bjørkum¹, Leandra Griebel² and Even Birkeland^{3,4}

Department of Safety, Chemistry and Biomedical Laboratory Sciences, Faculty of Engineering and Science, Western Norway University of Applied Sciences, Kronstad, Bergen, Norway

- 2. Swiss Federal Institute of Technology, Department of Health Sciences and Technology, Zurich, Switzerland
- 3. The Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway

4. The Proteomics Unit at the University of Bergen (PROBE)

INTRODUCTION

Introduction Sleep deprivation is becoming increasingly prevalent. It is caused by several conditions such as night- or alternating shift work and affects cellular processes and molecular mechanisms resulting in altered geneand protein expression. Circadian rhythm disruption or sleep deprivation are proposed to be involved in the affected cellular mechanisms behind development and progression of various cardiovascular-, immune-, mentaland neurodegenerative disorders as well as cancer¹⁻⁶.

We recently revealed human serum proteome changes after a simulated night shift, however, studies associated with partial sleep deprivation using a proteomics and systems biological approach are still sparse (refs. see Bjørkum) et al. 2021, BMC, https://doi.org/10.1186/s41606-021-00066-2)⁷. This study aimed to further explore changes in the human blood serum after 6h of sleep deprivation at night using newer proteomic methods identifying another set of serum proteins and exploring their representation and classification in systems biological databases built upon earlier knowledge on the specific proteins. **Material and methods** Human blood serum samples from 8 healthy voluntary females aged 22 to 57 years were analyzed using mass spectrometry (Orbitrap Eclipse) and high-pressure liquid chromatography (HPLC Dionex Ultimate 3000). Each subject was their own control, and two samples were taken from each subject, the first sample after 6h of sleep at night from 22:00, and the second sample after 6h of sleep deprivation the following night. Sleep-wakeand other physiological data can be found in Bjørkum et al. 2021⁷. Biological databases and bioinformatic software were used for systems biological- and comparative analysis with other sleep-related datasets.

Table 2. Top 5 enriched biological processes of the 66 significantly changed proteins

Biological process	Enrichment ratio (ER)	Proteins involved (gene symbol)
Protein activation cascade	36.8	APOH, C1RL, CFD, CFHR1, CFHR4, CLU, GP1BA, F2, F12, FBLN1, KNG1, MASP2, SERPING1
Platelet degranulation	30.8	AHSG, APOH, CD9, CFD, CLU, HRG, ITGA2B, ITIH3, KNG1, LAMP2, MMRN1, PF4, QSOX1, SERPING1, THBS1
Blood coagulation	13.7	APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1
Coagulation	13.6	APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1
Hemostasis	13.5	APOE, APOH, CD9, F2, F12, FBLN1, GP1BA, HRG, ITGA2B, KNG1, MMRN1, PF4, PF4V1, PROZ, SAA1, SERPING1, THBS1

The processes are sorted by the highest enrichment ratio (ER). The ER describes the proportion of proteins in our dataset of 66 proteins that belong to a particular biological process divided by the proportion of genes in the background set that belong to the same process. The respective associated significantly changed proteins after sleep deprivation are listed with their gene symbols. The false discovery rate (FDR) describes the proportion of errors among all positive findings (corrected for multiple hypothesis testing) and was ≤ 0.05 for all biological processes.

RESULT

Of the 793 proteins identified by mass spectrometry, 494 were considered for further analysis and 66 were found to be significantly changed after 6h of sleep deprivation at night, 63 upregulated and 3 downregulated. Functional enrichment analysis revealed the associations of these proteins with several biological processes and molecular functions relating to fields such as regulation, binding, or transport. Additionally, our data was found to be linked to different curated gene sets.

Table 3. Gene Ontology (GO) biological process, cellular component, molecular function and immune system process groups of the 66 significantly changed proteins

Group	# of terms	% of terms	Most represented term	# of proteins	Associated proteins (gene symbols)	
GO Biologi	cal Proce	SS				
Group11	63	43.15	Wound healing	20	APOE, APOH, CD9, CNTN1, F12, F2, FBLN1, GP1BA, HRG, ITGB1, KNG1, MMRN1, PF4, PF4V1, PROZ, S100A8, SAA1, SERPING1, THBS1, TSKU	
Group10	38	26.03	Cholesterol transport	9	APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1, PCSK9, TSKU	
Group9	10	6.85	Positive regulation of wound healing	7	APOH, CNTN1, F12, F2, HRG, ITGB1, THBS1	
Group8	9	6.16	Cholesterol transport	9	APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1 PCSK9, TSKU	
Group7	8	5.48	Cholesterol transport	9	APOA4, APOB, APOE, APOM, CLU, LCAT, LRP1, PCSK9, TSKU	
Group6	7	4.79	Negative regulation of endothelial cell migration	4	APOE, APOH, HRG, THBS1	
Group5	4	2.74	Regulation of transforming growth factor beta1 production	4	LTBP1, LUM, THBS1, TSKU	
Group4	2	1.37	Acute inflammatory response	7	AHSG, CNTN1, F12, F2, S100A8, SAA1, SAA4	
Group3	2	1.37	Vascular associated smooth muscle cell proliferation	З	DBH, IGFBP5, MMP2	
Group2	1	0.68	Complement activation	7	C1RL, CFD, CFHR1, CFHR4, CLU, MASP2, SERPING1	
Group1	1	0.68	Cell adhesion mediated by integrin	4	HRG, ITGA2B, ITGB1, MMRN1	
Group0	1	0.68	Cysteine-type endopeptidase inhibitor activity	3	AHSG, HRG, KNG1	
GO Cellula	r Compar	rtment				
Group6	8	40.00	High-density lipoprotein particle	10	APOA4, APOB, APOE, APOH, APOM, CLU, LCA PLA2G7, SAA1, SAA4	
Group5	5	25.00	Vesicle lumen	16	AHSG, APOB, APOH, CFD, CLU, DBH, HRG, ITIH3, KNG1, MMRN1, PF4, QSOX1, S100A8, SERPING1, THBS1, TTR	
Group4	3	15.00	Extracellular matrix	28	ADAMTSL4, AHSG, APOA4, APOE, APOH, CLU, CNTN1, COL6A3, F12, F2, FBLN1, GP1BA, HRG, HSPG2, KNG1, LTBP1, LUM, MMP2, MMRN1, PCOLCE, PF4, S100A8, SERPING1, SPARCL1, SSC5D, TGFBI, THBS1, THBS4	
Group3	1	5.00	Ficolin-1-rich granule membrane	3	CD93, CLU, LAMP2	
Group2	1	5.00	Blood microparticle	11	AHSG, APOA4, APOE, C1RL, CFHR1, CLU, F2, HRG, ITGA2B, KNG1, SERPING1	
Group1	1	5.00	Platelet dense granule	3	APOH, ITIH3, LAMP2	
Group0	1	5.00	Endoplasmic reticulum lumen	18	ADAMTSL4, AHSG, APOA4, APOB, APOE, CALU, CLU, COL6A3, F2, IGFBP5, KNG1, LTBP1, PCSK9 PROZ, QSOX1, SERPING1, SPARCL1, THBS1	

GO Molecular Function

Table 1. Significantly changed proteins (66) in human serum after 6h of sleep deprivation

SwissprotID	Gene symbol	Protein name	p-value	Fold- change (log2)	# of peptides
Upregulated pro	oteins (63)				
P06727	APOA4	Apolipoprotein A-IV	0.0010	1.016	45
P08514	ITGA2B	Integrin alpha-IIb	0.0025	1.107	8
O43852	CALU	Calumenin	0.0028	1.054	6
P05556	ITGB1	Integrin beta-1	0.0035	1.053	5
Q6ZNG0	ZNF620	Zinc finger protein 620	0.0042	1.037	1
Q14515	SPARCL1	SPARC-like protein 1	0.0055	1.051	11
Q9NPY3	CD93	Complement component C1q receptor	0.0073	1.099	6
P06733	ENO1	Alpha-enolase	0.0075	1.070	4
P02549	SPTA1	Spectrin alpha chain, erythrocytic 1	0.0081	1.028	1
A1L4H1	SSC5D	Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D	0.0122	1.044	1
P21926	CD9	CD9 antigen	0.0123	1.095	1
Q13201	MMRN1	Multimerin-1	0.0125	1.033	14
Q8WUA8	TSKU	Tsukushi	0.0125	1.063	3
P04180	LCAT	Phosphatidylcholine-sterol acyltransferase	0.0133	1.030	10
Q14766	LTBP1	Latent-transforming growth factor beta-binding protein 1	0.0140	1.047	18
P24593	IGFBP5	Insulin-like growth factor-binding protein 5	0.0143	1.047	6
P09172	DBH	Dopamine beta-hydroxylase	0.0146	1.034	15
Q15113	PCOLCE	Procollagen C-endopeptidase enhancer 1	0.0156	1.037	8
P10909	CLU	Clusterin	0.0166	1.020	21
Q6UXB8	PI16	Peptidase inhibitor 16	0.0168	1.040	8
P22891	PROZ	Vitamin K-dependent protein Z	0.0178	1.022	10
Q15582	TGFBI	Transforming growth factor-beta-induced protein ig-h3	0.0178	1.022	16
Q03591	CFHR1	Complement factor H-related protein 1	0.0179	1.028	12
O95445	APOM	Apolipoprotein M	0.0180	1.008	11
P35443	THBS4	Thrombospondin-4	0.0213	1.070	10
Q12860	CNTN1	Contactin-1	0.0214	1.056	7
P08253	MMP2	72 kDa type IV collagenase	0.0226	1.029	11
O00533	CHL1	Neural cell adhesion molecule L1-like protein	0.0246	1.048	22
P05109	S100A8	Protein S100-A8	0.0248	1.064	2
P04114	APOB	Apolipoprotein B-100	0.0251	1.004	309
P10720	PF4V1	Platelet factor 4 variant	0.0254	1.021	5
Q5SYB0	FRMPD1	FERM and PDZ domain-containing protein 1	0.0262	1.027	1
Q92496	CFHR4	Complement factor H-related protein 4	0.0285	1.032	9
P35542	SAA4	Serum amyloid A-4 protein	0.0290	1.017	5
Q06033	ITIH3	Inter-alpha-trypsin inhibitor heavy chain H3	0.0292	1.019	24
P33151	CDH5	Cadherin-5 OS=Homo sapiens	0.0298	1.030	14
P07359	GP1BA	Platelet glycoprotein lb alpha chain	0.0298	1.038	7
P00746	CFD	Complement factor D	0.0309	1.028	11
P98160	HSPG2	Basement membrane-specific heparan sulfate proteoglycan core protein	0.0311	1.059	24
P12111	COL6A3	Collagen alpha-3(VI) chain	0.0313	1.043	27
Q07954	LRP1	Prolow-density lipoprotein receptor-related protein 1	0.0330	1.054	9

Group11	11	33.33	Lipoprotein particle receptor binding	6	APOB, APOE, CLU, HSPG2, LRP1, PCSK9
Group10	7	21.21	Lipoprotein particle receptor binding	6	APOB, APOE, CLU, HSPG2, LRP1, PCSK9
Group9	2	6.06	Opsonin binding	4	CD93, CFHR1, CFHR4, MASP2
Group8	2	6.06	Fibronectin binding	6	FBLN1, IGFBP5, ITGB1, MMP2, SSC5D, THBS1
Group7	2	6.06	Apolipoprotein binding	3	LCAT, LRP1, PCSK9
Group6	2	6.06	Serine-type endopeptidase activity	13	C1RL, CFD, CNTN1, COL6A3, F12, F2, HRG, ITIH3, MASP2, MMP2, PCSK9, PROZ, SERPING1

Functional analysis performed with the Cytoscape plug-in ClueGO. The number of terms describes how many processes components or functions are represented in each respective group of the GO category and the percentage of terms describes the relative representation of each group. Groups that have $\geq 20\%$ of the terms assigned to them are marked in bold. The most represented term in every group of each GO category is the term with the greatest number of significantly changed proteins involved of all the terms in the group. The respective gene symbols of the proteins involved are listed in the associated proteins column. If there were multiple terms with the same number of proteins involved in a group, the term with the higher percentage of associated genes found in ClueGO was listed. All p-values were adjusted for multiple hypothesis testing (Bonferroni correction) and ≤ 0.05 .

Our study was able to reveal another set of human serum proteins altered by sleep deprivation and to connect similar biological processes to sleep deprivation that have been identified before with slightly different methods in Bjørkum et al. 2021.

Based on the differentially expressed proteins in this study, our results not only support these previous findings, but also those from other sleep-related studies, that sleep deprivation affects several biological functions such as regulation, binding or transport, and thereby also associates to protein changes in clinically relevant pathological conditions like altered platelet function and coagulation, oxidative stress, impaired immune function, cardiovascular and neurodegenerative diseases, and cancer.

1. Russell KL, Rodman HR, Pak VM. Sleep insufficiency, circadian rhythms, and metabolomics: the connection between

metabolic and sleep disorders. Sleep Breath Schlaf Atm. May 2023. doi:10.1007/s11325-023-02828-x

2. Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A. 2014;111(29):10761-10766. doi:10.1073/pnas.1402663111

3. Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol. 2020;432(12):3578-3610. doi:10.1016/j.jmb.2020.04.027

4. O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol. 2019;253:59-81. doi:10.1007/164_2018_125

5. Mauvoisin D. Circadian rhythms and proteomics: It's all about posttranslational modifications! Wiley Interdiscip Rev Syst Biol Med. 2019;11(5):e1450. doi:10.1002/wsbm.1450

6. Muheim CM, Ford K, Medina E, Singletary K, Peixoto L, Frank MG. Ontogenesis of the molecular response to sleep loss. Neurobiol Sleep Circadian Rhythms. 2023;14:100092. doi:10.1016/j.nbscr.2023.100092

7. Bjørkum AA, Carrasco Duran A, Frode B, et al. Human blood serum proteome changes after 6 hours of sleep deprivation at night. Sleep Sci Pract. 2021;5(1):14. doi:10.1186/s41606-021-00066-2

ACKNOWLEDGEMENT AND CONTACT*

Beate Kluge, Anita Skårhaug Jacobsen, Ingeborg Dyrøy Lotsberg and Michelle Louise Pettersen * Alvhild Alette Bjørkum, aab@hvl.no, +47 97673388

All significantly changed proteins in human serum after 6h of sleep deprivation with no more than 4 missing values (out of 16), up- (63) and down-regulated (3) with p-values \leq 0.05. Each protein is listed with their SwissProtID, gene symbol and protein name. The fold-change (log2) shows the degree of change in the protein concentration in the sleep deprivation samples compared to the control samples. The number of peptides indicates how many peptides have been found for the respective protein. Proteins that have been identified by two or more peptides are shown in bold.