# IDENTIFYING STABLE OBJECTIVE MARKERS OF STRESS-RELATED SLEEP DISTURBANCES: LABORATORY AND HOME-BASED, REPEATED MEASUREMENT OF CORTICAL HYPERAROUSAL AND INFLAMMATORY UPREGULATION DURING NOCTURNAL SLEEP 

# B. Blaskovich ${ }^{1}$, R. Huang ${ }^{1}$, R. Hütz ${ }^{1}$, M. Zyskowski², L. Besedovsky ${ }^{1}$ <br> 1LMU Munich / Institute of Medical Psychology, Faculty of Medicine, Munich, Germany <br> ${ }^{2}$ Technical University of Munich, Klinik und Poliklinik für Unfallchirurgie der TU-München Rechts der Isar, Munich, Germany <br> <br> INTRODUCTION 

 <br> <br> INTRODUCTION}

- The prevalence of sleep disorders in the general population is getting to an all-time high
- Sleep disorders are frequently associated with other diseases and can also partly serve as precursors for later comorbidities ${ }^{2}$
- Due to sleep's significant importance in the context of combating stress-related pathologies, the focus of this study is the investigation of the underlying mechanisms of stress-related sleep disturbances

Our aim:


METHOD
Figure 1: Procedure of mixed arm


The mixed arm of the study consists of two consecutive nights (habituation, experimental) in the sleep lab (orange bars) followed by five home-based nights. During the first two nights, evening and morning subjective questionnaires are filled out on the smartwatches. During the experimental night, venous blood samples are taken before bedtime and every 2 h during sleep Additionally, evening and morning saliva samples are collected. Sleep is monitored by PSG and an EEG headband. During the second part participants go through the same procedure every day (gray bars). They wear a smartwatch $24 / 7$, evening and morning saliva samples als blood samples are collected every morning. Sleep is monitored by the EEG headband

Figure 2: Procedure of home-based arm


Figure 2:
In the home-based arm, participants go through the same procedure as the second part in the mixed arm In this case participants follow the protocol for seven days at home

Participants descriptive statistics:

## - $\mathbf{N}=90$

- Controls: $\mathrm{n}=32$, mean $_{\text {Age }}=23.9, \mathrm{sd}_{\mathrm{Age}}=3.3,19$ male

$$
\text { - Stress: } n=58, \text { mean }_{\text {Age }}=24.8, \mathrm{sd}_{\mathrm{Age}}=3.6,25 \text { male }
$$

## EEG:

Dreem2: 6 dry electrodes (Fp1,Fp2,F7,F8,O1,O2) + PPG $\rightarrow 4$ channels (F7-O1,F8-O2,F8-F7,Fp1-F8)

- PSG: 11 electrodes (F3, F4, C3, Cz, C4, P3, P4) + EOG + EMG $\rightarrow 6$ channels (F3-A2, F4-A1, C3-A2, C4-A1, P3-A2, P4-A1)

Sleep-Analysis: (macrostructure)

- Dreem2: Automatic sleep scoring by Dreem
- PSG: Sleep stages were scored manually by trained experts, according to the standardized criteria ${ }^{4}$


Smartwatch:
Surveys:

## Saliva-Analysis

Blood-Analysis:
Statistical-Analysis:

Ecological momentary assessment via subjective questionnaires CTQ, FIRST, LEC, MCTQ, PCL-5, PHQ, STAI-T, MADRE, PSQI, DMEQ, Health Questionnaire

Alpha-Amylase + Cortisol
hsCRP, IL-1 $\beta$, IL-6, TNF- $\alpha$
Group comparison: ANOVA, t-Tests, Pearson's correlation

## PRELIMINARY RESULTS

Data analysis at early stages $\rightarrow$ Below presented preliminary analysis from using experimental nigh from the sleep lab. $\rightarrow$ All traditional macrostructural values were tested, only significant results are presented here


## CONCLUSION

The results from this project will help us characterize underlying mechanisms behind stress-related sleep disturbances, which could serve as early markers of potential risk-factors of psychiatric disorders as well as help to envision more process-specific, targeted prevention techniques interventions and treatments in clinical psychology and psychiatry.

## REFERENCES

## Clinical Sleep Medicine. htpp://doi. org/10.5664/jcsm. 9392

Anttaainen, Ula et al. (2019): Insomnia symptoms combined with nocturnal hypoxia associate with cardiovascular como
sleep apnea cohort (ESADA), in: Sleep Breath, Vol. 23 (2019), p. 805-814, https://doi.org/10.1007/s $11325-018-1757-9$
2. Arnal, P. J., Thorey, V. Debellemaniere, E., Ballard, M. E., Bou Hernandez, A., Guillot, A., \& Sauvet, F. (2020) The . compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep, 43(111), zsaa097. Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd,

## CONTACT

borbala.blaskovich@med.uni-muenchen.de

