

Wearable headband EEG with pulse plethysmography to assess cortical hyperarousal in individuals with stressrelated mental disorders

B. Blaskovich^{1,2}, E. Bullón-Tarrasó¹, D. Pöhlchen¹, A. Manafis¹, H. Neumayer¹, L. Besedovsky², T. Brückl¹, BeCOME Working Group¹, P. Simor^{3,4}, F. P. Binder¹, V. I. Spoormaker¹

¹Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, Munich, ²Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany ³Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary, ⁴Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary

INTRODUCTION

- Sleep disturbances, as a transdiagnostic factor, are linked to stress-related mental disorders¹
- Wearable sleep devices are now available to measure sleep in the home setting
- Controversy persists about the application and validity of sleep wearables²

1) Sleep macrostructure:

	Patient (N = 47)		CTL (N = 36)		Independent samples t-test / Mann – Whitney U test	
	Mean	SD	Mean	SD	t ₈₁ or U value	p value
Sleep latency (min)	20.4	29.9	14.6	9.7	742.5	.41
Sleep efficiency (%)	88.9	7.1	90.8	5.5	1033	.318-
Awakenings (#)	22.8	8.3	20.1	6.6	-1.636	.318-
WASO (min)	29.3	28.1	24.1	19.3	738	.41
NREM stage 2 (min)	190.4	45.9	185.4	44.1	776.5	.52
NREM stage 2 (%)	47.2	7.7	47.2	7.8	877	.74
SWS (min)	90.7	25.9	87.1	22.9	671	.74
SWS (%)	23.1	6.9	22.7	5.5	331	.74
REM (min)	113.9	31.4	112.5	36.4	181	.73
REM (%)	28.5	6.3	29.3	8.7	885.5	.74
Stage transitions (#)	76.7	21.8	70.4	18.2	-1.405	.32
SWS stage transitions	7.4	2.8	7.8	2.7	.663	.74
(#)						

RESULTS

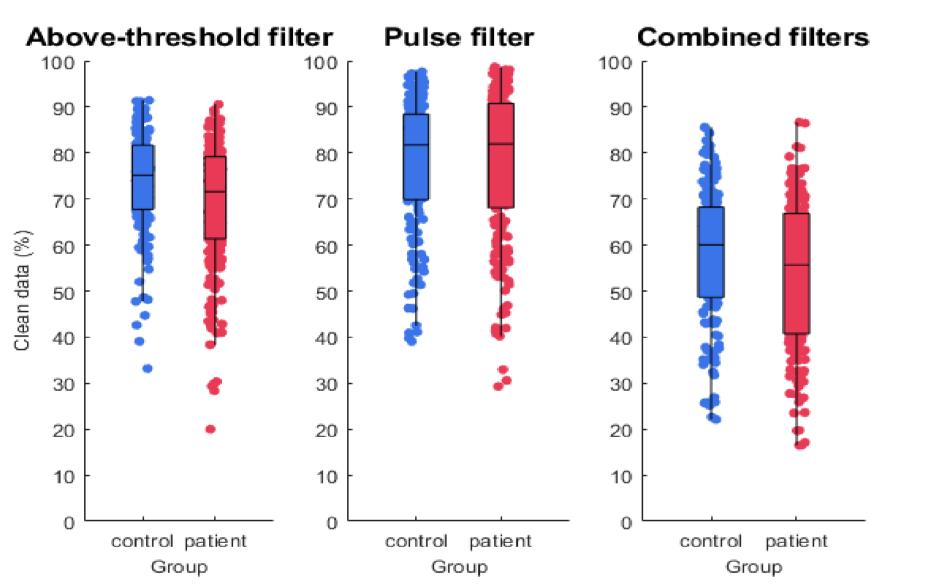
 \succ We **aimed** at investigating whether these devices provide **usable**, high-quality data and identifying which sleep biomarkers can be reliably extracted from them.

METHOD

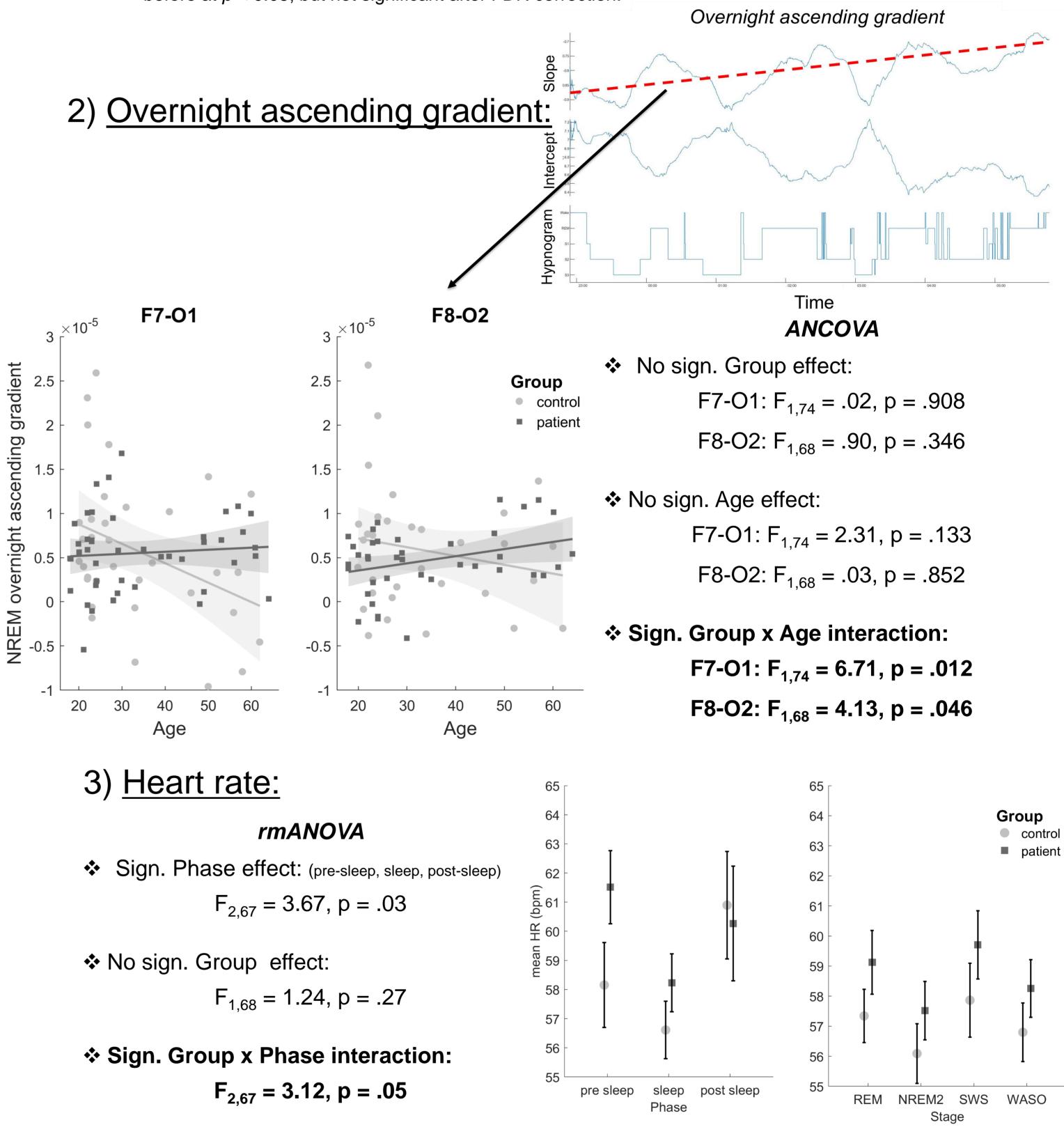
Participants:

- **N = 83** (controls: n = 36; patients*: n = 47), **total nights = 371**
 - \rightarrow 1–18 nights / participant (mean_{nights} = 4.45)

EEG-headband:


Dreem2 : 6 dry electrodes (Fp1,Fp2,F7,F8,O1,O2) + PPG

➤ 4 channels (F7-O1,F8-O2,F8-F7,Fp1-F8)


* non-medicated, with stress-related mental disorders

Sleep analysis:

- **Macrostructure**: Automatic sleep scoring by Dreem²
- **Spectral power analysis:**
- \rightarrow Artifact detection: In-house automatized script \rightarrow combined use of 2 filters: Above – threshold filter, Pulse-filter

P values corresponding to one-sided *t*-tests and Mann–Whitney *U* tests are corrected for multiple comparisons (Benjamini–Hochberg correction). WASO = wake after sleep onset, SWS = slow-wave sleep; + significant before at p < 0.05, but not significant after FDR correction.

- Spectral slope analysis (Bódizs et al.³):
 - <u>Slope & Intercept</u>: FFT \rightarrow log transformation of absolute spectrum in 4s windows \rightarrow interpolation \rightarrow excluding spindle frequency \rightarrow linear model fitting = slope + intercept
- **PPG analysis:** \bullet
 - \rightarrow **Peak detection:** In-house automatized script: filtering \rightarrow smoothing \rightarrow findpeaks \rightarrow RR \rightarrow artifact correction based on EEG = mean HR and RMSSD

Statistical analysis: median of all nights / participant

Group comparison: ANOVA, ANCOVA, rmANOVA, t-test, Mann-Whitney *U* test

DISCUSSION AND CONCLUSION

ing gradient

overnight ascend

- Headband: EEG-headband well accepted by patients + sufficient data quality for macro- and microstructural analysis of sleep
- Macrostructure: No large macrostructural between group differences
- Slope analysis: Reduced age-related decline in low vs. high freq. power ratio in patients
- PPG: Higher pre-sleep HR in patients, that reduced during sleep and dissipated at wakefulness

 \rightarrow EEG-headband appears to be a meaningful tool for quantifying various sleep biomarkers \rightarrow Future analysis should resolve whether the lack of age-associated dynamicity is due to floor effect in patients

1. Palagini, L., Hertenstein, E., Riemann, D., & Nissen, C. (2022, May 4). Sleep, insomnia and mental health. J *Sleep Res*, e13628. https://doi.org/10.1111/jsr.13628

2. Arnal, P. J., Thorey, V., Debellemaniere, E., Ballard, M. E., Bou Hernandez, A., Guillot, A., ... & Sauvet, F. (2020). The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep, 43(11), zsaa097.

3.Bódizs, R., Szalárdy, O., Horváth, C., Ujma, P. P., Gombos, F., Simor, P., ... & Dresler, M. (2021). A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum. Scientific reports, 11(1), 1-18.

Study can be found as a preprint :

Blaskovich, B., et al. "The utility of wearable headband electroencephalography and pulse photoplethysmography to assess cortical hyperarousal in individuals with stress-related mental disorders." *medRxiv* (2023): 2023-06.

For further questions please contact:

borbala_blaskovich@psych.mpg.de

borbala.blaskovich@med.uni-muenchen.de

